

Jhoany Jhordann Barrera Escobedo

Modelagem Transiente da Transferência de Calor em Dutos de Petróleo ou Gás, Termicamente Isolados

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientadora: Angela Ourivio Nieckele

Rio de Janeiro setembro de 2005 Pontifícia Universidade Católica do Rio de Janeiro

Jhoany Jhordann Barrera Escobedo

Modelagem Transiente da Transferência de Calor em Dutos de Petróleo ou Gás, Termicamente Isolados

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof^a. Angela Ourivio Nieckele Orientadora Departamento de Engenharia Mecânica - PUC-Rio

Prof. Luis Fernando Alzuguir Azevedo Co orientador Departamento de Engenharia Mecânica - PUC-Rio

> Dr. Felipe Bastos de Freitas Rachid Universidade Federal Fluminense

Dr. Luis Fernando Gonçalves Pires Instituto de Pesquisa e Desenvolvimento – Ctex

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 16 de Setembro de 2005

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Jhoany Jhordann Barrera Escobedo

Graduou-se em Engenharia Mecânica na Universidad Nacional de Ingeniería (Lima, Peru) em 2001.

Ficha Catalográfica

Barrera Escobedo, Jhoany Jhordann

Modelagem transiente da transferência de calor em dutos de petróleo ou gás, termicamente isolados / Jhoany Jhordann Barrera Escobedo; orientadora: Ângela Ourivio Nieckele; co-orientadora: Luis Fernando Alzuguir Azevedo. – Rio de Janeiro: PUC, Departamento de Engenharia Mecânica, 2005.

125 f. ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Inclui referências bibliográficas.

 Engenharia mecânica – Teses. 2. Transiente térmico.
 Resfriamento. 4. Linhas submarinas. 5. Capacidade térmica. I. Nieckele, Ângela Ourivio. II. Azevedo, Luis Fernando Alzuguir. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

CDD: 621

PUC-Rio - Certificação Digital Nº 0321182/CB

Para minha família

Agradecimentos

À Professora Angela Ourivio Nieckele e ao Professor Luis Fernando Azevedo pela dedicada orientação no desenvolvimento desta dissertação e pelo apoio durante o curso de mestrado.

A minha família, em especial meus pais Orfelia e Hildomaro, e a minha irmã Magaly pelo apoio e estimulo durante este tempo longe de casa.

Aos amigos do SIMDUT, em especial ao Arturo Ortega e Cláudio Velosso pelas "dicas" e sugestões sobre os *softwares* comerciais de simulação de dutos.

Aos professores do Departamento de Engenharia Mecânica da PUC-Rio pelos conhecimentos fornecidos.

A todos os amigos do mestrado pelos bons momentos compartilhados.

A CAPES e à PUC-Rio pela ajuda financeira recebida durante o curso.

Resumo

Barrera Escobedo, Jhoany Jhordann. **Modelagem Transiente da Transferência de Calor em Dutos de Petróleo ou Gás, Termicamente Isolados.** Rio de Janeiro, 2005, 125 p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro.

Linhas submarinas são utilizadas na produção e transporte de petróleo e seus derivados. Em ambas as situações, o controle da transferência de calor do fluido para o ambiente externo pode ser um fator determinante para o escoamento. No caso de produção em águas profundas, o fluido aquecido perde calor para a água do mar gelada. A perda de calor é controlada através do isolamento térmico, o qual é projetado para operações de escoamento em regime permanente. Durante eventuais paradas de operação, o fluido estagnado no interior da tubulação ao perder calor para o ambiente frio, pode atingir níveis críticos de temperatura, acarretando graves problemas, tais como formação de hidratos ou deposição de parafina nas paredes da tubulação, o que pode levar ao bloqueio da linha e interrupção de produção. No transporte de produtos, o reinício de bombeio de fluidos muitos viscosos também é um problema crítico, devido ao aumento significativo da viscosidade com a redução da temperatura. O presente trabalho apresenta uma análise da influência da capacidade térmica da parede do tubo e das camadas de revestimento no transiente térmico de linhas com muito isolamento. A perda de calor da linha para o ambiente é determinada resolvendo-se a equação transiente de condução de calor para as camadas de revestimento da tubulação, utilizando um modelo uni-dimensional na direção radial. O método de volumes finitos é empregado para resolver o escoamento transiente no interior da tubulação acoplado com o transiente térmico na parede da tubulação, a partir do instante em que uma válvula é fechada na extremidade da tubulação interrompendo o fluxo. Comparações com as previsões de softwares comerciais foram realizadas e suas limitações são discutidas. Resultados obtidos das simulações para o escoamento tanto de líquidos quanto de gases, considerando e desprezando a capacidade térmica, mostram que o efeito da mesma é relevante na determinação do tempo de resfriamento da linha e do fluido em seu interior.

Palavras-chave

Transiente térmico, resfriamento, linhas submarinas, capacidade térmica.

Abstract

Barrera Escobedo, Jhoany Jhordann. **Transient Heat Transfer Modeling of Thermally Insulated Oil or Gas Pipelines.** Rio de Janeiro, 2005, 125 p. MSc. Dissertation – Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro.

Subsea pipelines are employed not only for production but also for transportation. In both situations, warm oil loses heat to the cold sea water. The heat loss to the ambient is controlled by means of thermal insulation, which is designed for steady state operations. During shutdowns, the stagnant fluid in the pipeline loses heat to the cold surrounding, eventually reaching some critical temperature. As a result, several problems can occur, such as formation of hydrates or deposition of high molecular weight paraffins on the inner wall of the subsea line, which can lead to flow line blockage and production shutdown. Restart of very viscous fluid after shutdown is also critical, since viscosity increases significantly with the reduction of the temperature. This work presents an analysis of the influence of the pipe wall thermal capacitance on the transient behavior of heavily insulated lines. The heat loss from the pipeline is determined, by solving the transient heat conduction equation for the pipewall layers, utilizing a simple one-dimensional model in the radial direction. The finite volume method is employed to solve the transient flow inside the pipeline, from the time instant that a valve at the end point of the line is closed, coupled with the pipe wall thermal transient. Comparisons with the prediction of commercial softwares were performed and their limitations are addressed. Numerical results obtained for flows of both liquid and gases, considering and neglecting the thermal capacitance, revealed that accounting for the thermal capacity of the wall is relevant to the determination of cooldown times

Keywords:

Thermal model, transient, cooldown, sub-sea lines, heat capacity.

Sumário

1.	Intro	dução	19
	1.1.	. Identificação do problema	
	1.2.	2. Motivação	
	1.3.	3. Revisão Bibliográfica	
	1.4.	. Objetivo	
	1.5.	. Organização do Trabalho	
2.	Modelamento Matemático		31
	2.1.	Conservação de Massa	32
		2.1.1. Variações da Área da Tubulação	33
		2.1.2. Compressibilidade do Fluido	34
		2.1.3. Equação para a Pressão	34
	2.2.	Conservação da Quantidade de Movimento Linear	35
		2.2.1. Fator de Atrito	36
	2.3.	Conservação da energia	37
		2.3.1. Modelo Pigsim-W	40
		2.3.2. Modelo Pigsim-U	42
		2.3.3. Coeficientes convectivos de transferência de calor	43
	2.4.	Propriedades do Fluido	45
		2.4.1. Massa Específica	46
		2.4.2. Viscosidade Absoluta	47
	2.5.	Condições de Contorno	47
	2.6.	Condições Iniciais	48
		2.6.1. Fluido em Repouso	48
		2.6.2. Inicialização em Regime Permanente	49
	2.7.	Modelo Matemático utilizado pelo software Pipeline Studio	49
	2.8.	. Modelo Matemático utilizado pelo software Stoner 5	
	2.9.	 Modelo Matemático utilizado pelo software OLGA 	

3.	Método Numérico		62
	3.1.	Discretização das Equações de conservação	62
		3.1.1. Equação da Continuidade	64
		3.1.2. Equação da Quantidade do Movimento Linear	65
		3.1.3. Equação de conservação da energia	66
	3.2.	Discretização da equação de condução de Calor	67
	3.3.	Solução do Sistema Algébrico	
	3.4.	 Critério de Convergência 	
	3.5.	Diagrama de fluxo e procedimento geral	73
4.	Análise de resultados		76
	4.1.	Escoamento em líquidos	78
		4.1.1. Condições de contorno e inicial	81
		4.1.2. Influência da capacidade térmica	82
		4.1.3. Análise paramétrica	91
	4.2.	Escoamento de gás	98
		4.2.1. Condições de contorno e inicial	99
		4.2.2. Influência da capacidade térmica	101
		4.2.3. Análise paramétrica	110
5.	Com	nentários finais	113
Re	eferên	ncias Bibliográficas	115
Ap	êndic	ce A	118

Lista de Figuras

Figura 1.1 -	Disposição da Máster-1 e da SDV em uma linha de		
	produção.	20	
Figura 1.2 -	Bloqueio de linha por formação de hidratos	20	
Figura 1.3 -	Envelope de formação de hidratos	21	
Figura 1.4 -	Bloqueio de linha por formação de parafinas	22	
Figura 1.5 -	Arranjo <i>Pipe-in-Pipe</i>	23	
Figura 1.6 -	Arranjo Pipe-in-Pipe aquecido eletricamente.	24	
Figura 2.1 -	Volume de controle elementar	31	
Figura 2.2 -	Secção transversal utilizada pelo software OLGA	60	
Figura 3.1 -	<i>Layout</i> da tubulação	62	
Figura 3.2 -	Distribuição deslocada de malha	63	
Figura 3.3 -	Malha utilizada para a discretização da equação de		
	condução de calor	68	
Figura 3.4 -	Esquemático do sistema algébrico heptadiagonal	69	
Figura 3.5 -	Fluxograma do modelo implementado	74	
Figura 3.6 -	Fluxograma da rotina MARCHA	75	
Figura 4.1 -	Configuração utilizada para o analise do transiente	76	
Figura 4.2 -	Regime permanente do teste do liquido	82	
Figura 4.3 -	Perfil de temperatura com o tempo em $x = 500$ m.	83	
Figura 4.4 -	Perfil de temperatura após 4 horas do fechamento		
	da válvula	84	
Figura 4.5 -	Perfil de temperatura após 8 horas do fechamento		
	da válvula	84	
Figura 4.6 -	Perfis de temperatura ao longo do duto obtidos com		
	o modelo <i>Pigsim-W</i>	85	
Figura 4.7 -	Temperatura na parede do duto em $x = 500m$.	86	
Figura 4.8 -	Perdas de calor em uma seção na metade do duto		
	(x=500m)	87	
Figura 4.9 -	Perfis de pressão e velocidade	88	

Figura 4.10 - Variação da pressão, velocidade e massa	
específica em x = 500m.	89
Figura 4.11 - Variação dos números de Reynolds e de Grashof	
com o tempo em x = 500m.	90
Figura 4.12 - Variação dos parâmetros Re Gr e Gr/Re ² com o	
tempo em $x = 500$ m.	90
Figura 4.13 - Variação do número de Nusselt com o tempo em x	
= 500m.	91
Figura 4.14 - Perfil de temperatura com o tempo em $x = 500m$.	
Avaliação da influência da condutividade térmica	93
Figura 4.15 - Perfil de temperatura com o tempo em $x = 500m$.	
Avaliação da influência da difusividade térmica	94
Figura 4.16 - Taxa de transferência de calor com o tempo em	
uma seção na metade do duto (x = 500 m). $\alpha_{iso}/\alpha = \infty$	96
Figura 4.17 - Taxa de transferência de calor com o tempo em	
uma seção na metade do duto (x = 500 m). α_{iso}/α	
= ∞ e $\alpha_{aco}/\alpha = \infty$	96
Figura 4.18 - Variação da temperatura com o tempo em x =	
500m. Avaliação da influência da espessura do	
isolamento	97
Figura 4.19 - Variação da temperatura com o tempo em x =	
500m. Avaliação da influência do diâmetro do duto.	97
Figura 4.20 - Regime permanente para o escoamento do gás	100
Figura 4.21- Variação da temperatura com o tempo em $x = 10$	
km	101
Figura 4.22- Perfil de temperatura após 2 horas do fechamento	
da válvula	102
Figura 4.23- Perfil de temperatura após 4 horas do fechamento	
da válvula	102
Figura 4.24- Perfis de temperatura obtidos com o modelo	
Pigsim-W	104
Figura 4.25- Variação da temperatura da parede do duto com o	
tempo em x = 10 km	104

Figura 4.26- Perdas de calor em uma seção na metade do duto	
(x = 10 km)	105
Figura 4.27- Perfis de pressão e velocidade	106
Figura 4.28- Variação da velocidade, massa específica e	
pressão com o tempo em x = 10 km.	107
Figura 4.29- Variação do número de Reynolds com o tempo em	
x = 10 km.	108
Figura 4.30- Variação temporal do número de Grashof e da	
diferença de temperaturas entre o fluido e a parede	
interna do duto $(T-T_{sol})$ em x = 10 km.	108
Figura 4.31- Variação temporal dos parâmetros ReGr e Gr/Re ²	
em x = 10 km.	109
Figura 4.32- Variação temporal dos números de Reynolds e	
Nusselt em x = 10 km.	109
Figura 4.33- Perfis de temperatura com o tempo em $x = 10$ km.	
Avaliação da difusividade térmica.	110
Figura 4.34 - Comparação das correlações utilizadas pelos	
diferentes softwares	112
Figura A.1- Comparação da solução numérica com a solução exata	120
Figura A.2- Erros normalizados utilizando esquemas de	
discretização linear (LIN) e logarítmico (LOG) para	
diferentes passos de tempo, NC = 5	121
Figura A.3- Erros normalizados utilizando esquemas de	
discretização linear (LIN) e logarítmico (LOG) para	
diferentes passos de tempo, NC = 50	121
Figura A.4- Solução do regime transiente para diferentes passos de	
tempo, $NC = 5$	123
Figura A.5- Temperaturas em regime permanente: NC=5, Dt=10s	123
Figura A.6- Solução em regime transiente para diferentes passos	
de tempo, Nc = 5	124
Figura A.7- Influência do número de volumes de controle (V.C.)	
por camada	125

Lista de tabelas

Tabela 4.1 - Propriedades da parede do duto

78

Nomenclatura

а	Velocidade do som (m/s)
$a_0, a_1, a_{2,}$	Coeficientes de ajuste da equação do calor específico
a_3, a_4, a_5	Coeficientes de ajuste da equação do calor específico
A	Área da seção transversal
<i>A,B,C,D</i>	Constantes empíricas da correlação de Standing & Katz
A_g	Área de passagem da válvula
C_p	Calor específico a pressão constante.
$C_{p,s}$	Calor específico do material da camada
$\mathcal{C}_{\mu,p}$	Coeficiente de pressão da viscosidade
$\mathcal{C}_{\mu,T}$	Coeficiente de temperatura da viscosidade
$C_{v,ref}$	Calor específico a volume constante do software Stoner
$C_{cv,T}$	Dependência do calor específico com a temperatura.
$C_{k,T}$	Dependência da condutividade térmica com a temperatura.
C_D	Coeficiente de descarga
D	Diâmetro do tubo (m)
D_e	Diâmetro externo do tubo (m)
$D_{\it ref}$	Diâmetro do tubo à pressão atmosférica (m)
D _{rev,j}	Diâmetro exterior da camada j
D_o	Diâmetro externo da tubulação (m)
$D_1, D_{2,} D_3$	Coeficientes do calculo da viscosidade da equação de Lee- e Gonzales-
	Eakin
е	Espessura da parede do tudo (m)
е	Energia total específica
e_j	Espessura da camada j
Ε	Modulo de Young
f_{at}	Fator de atrito
F	Força
g	Aceleração da gravidade (m/s^2)

Gr	Número de Grashof	
h	Entalpia	
h_i	Coeficiente de transferência de calor interno $(W/(m^2 K))$	
h_o	Coeficiente de transferência de calor externo (W/(m ² K))	
h_{solo}	Profundidade em que a tubulação esta enterrada (m)	
k	Condutividade térmica do fluido	
$k_{s,j}$	Condutividade térmica da camada j	
k _{solo}	Condutividade térmica do solo	
k_{∞}	Condutividade térmica do ambiente marinho	
$K_{ ho}$	Modulo de Bulk	
$K_1 e K_2$	Constantes empíricas da equação do Modulo de Bulk	
'n	Vazão mássica (kg/s)	
\overline{M}	Massa molecular da mistura gasosa	
N	Número de camadas	
Nu	Número de Nusselt	
Р	Pressão	
P _{crm}	Pressão pseudo-crítica (Pa)	
P _{cr}	Pressão critica	
P_{ref}	Pressão de referencia (Pa)	
Pr	Pressão reduzida	
P_{atm}	Pressão atmosférica (Pa)	
Pt_{in}	Pressão constante à montante da válvula de entrada	
Pt_{out}	Pressão constante à jusante da válvula de saída	
P_{wg}	Perímetro da fase gás	
P_{wl}	Perímetro da fase gás liquido	
Pr	Número de Prandtl	
Ż	Taxa de transferência de calor	
r	Coordenada radial	
<i>r</i> _i	Raio interno do duto (m)	
r _o	Raio externo do último isolante (m)	
R	Constante do gás (N·m /Kg·K)	
Re	Número de Reynolds	

Re_1, Re_2	Parâmetros para caracterizar o escoamento laminar o turbulento n	
	software Stoner	
Res_j	Resistência térmica equivalente da parede do tubo	
R	Constante universal dos gases (J/kgmol·K)	
SG	Gravidade especifica	
t	Tempo (s)	
tol_1	Tolerância no cálculo do erro absoluto	
tol_2	Tolerância no cálculo do erro normalizado	
Т	Temperatura do fluido	
T _{cr}	Temperatura crítica	
T _{crm}	Temperatura pseudo-crítica (K)	
T_{ref}	Temperatura de referencia (K)	
Tr	Temperatura reduzida,	
$T_{s,j}$	Temperatura da camada (K)	
$T_{s,1}$	Temperatura da primeira camada (parede do duto) (K)	
$T_{s,}$	Temperatura da última camada de revestimento (K)	
T_w	Temperatura da parede interna da tubulação (K)	
T_∞	Temperatura do ambiente externo (K)	
и	Energia específica interna	
U_e	Coeficiente global de troca térmica (W/ (m ² K))	
V	Velocidade (m/s)	
V_∞	Velocidade da corrente externa (m/s)	
V_t	Velocidade de transferência de massa	
Ŵ	Trabalho realizado no volume de controle.	
$\dot{W_p}$	Taxa de trabalho devido às forças de pressão	
$\dot{W_g}$	Taxa de trabalho devido às forças gravitacionais	
x	Coordenada axial	
Ζ	Elevação (m)	
Ζ	Fator de compressibilidade	

Letras Gregas:

α	Fração volumétrica de gás
$\alpha_{s,j}$	Difusividade térmica do material da camada

β	Coeficiente de expansão térmica	
β_{ref}	Coeficiente de expansão térmica de referencia	
ΔT	Diferença de temperaturas entre o fluido e a parede interna.	
χ	Percentagem de abertura da válvula	
φ	Parâmetro que controla o uso da correlação do Nusselt do software	
	Stoner	
Е	Rugosidade do tubo (m)	
μ	Coeficiente de Poisson	
$\mu_{_f}$	Viscosidade absoluta do fluido (kg/m·s)	
μ_{∞}	Viscosidade absoluta do ambiente marinho (kg/m·s)	
μ_m	Viscosidade da película do fluido junto à parede	
μ_{ref}	Viscosidade absoluta de referência	
θ	Ângulo do eixo do tubo com a horizontal	
ρ	Massa específica (kg/m ³)	
$ ho_{\it ref}$	Massa específica (kg/m ³)	
$ ho_{s,j}$	Massa especifica da camada (kg/m ³)	
$ ho_{\infty}$	Densidade do ambiente marinho (kg/m ³)	
$ au_s$	Tensão cisalhante	
$ au_i$	Tensão cisalhante na interface líquido-gás	
$ au_{wg}$	Tensão cisalhante da fase gasosa com a parede da tubulação	
$ au_{wl}$	Tensão cisalhante da fase liquida com a parede da tubulação	
Γ_g	Troca de massa entre as fases gás e liquido	

Subscritos:

i	Ponto nodal
in	Entrada do duto
т	Média
out	Saída do duto
ref	Variáveis de referência

Sobrescritos:

• Instante do tempo anterior